Betting

Back to articles

The Poisson Distribution Applied to Sports Betting

The Poisson distribution is a powerful statistical tool used to predict the probability of various outcomes in rare events, such as exact scores in sports betting. In this article, we will explore how the Poisson distribution can be applied to sports betting by detailing its definition, formulas, concrete examples, and discussing its limitations.


Definition of the Poisson Distribution


The Poisson distribution is a probability distribution that describes the number of times an event occurs in a fixed interval of time or space. It is particularly useful for modeling rare events or random occurrences.


Poisson Distribution Formula


The formula for the Poisson distribution is as follows:


Formule de la loi de Poisson


where:

- P(k;λ) is the probability of observing \( k \) events in a given interval.

- λ is the average rate of occurrence of the events.

- k is the number of events observed.

- e is the base of the natural logarithm (approximately equal to 2.71828).


Loi de Poisson appliquée aux Paris Sportifs


Examples of Exact Score Predictions with a fictitious example between Team A and Team B, and a real example between Lille and Lens in Ligue 1 (2023/24)


Example 1: Match between Team A and Team B


Suppose Team A scores an average of 1.5 goals per match and Team B scores an average of 1.2 goals per match. To predict the exact scores, we calculate the probabilities for each possible score.


Calculating Score Probabilities


For Team A:



For Team B:



To find the probability of an exact score, we multiply the corresponding probabilities of each team.


For example, for a 2-1 score in favor of Team A:


 P(Score 2-1)=P(2;1.5)×P(1;1.2)=0.2510×0.3614=0.0907P(Score 2-1)=P(2;1.5)×P(1;1.2)=0.2510×0.3614=0.0907


Calculating Attack Strength and Defense Potential


For a more in-depth analysis, we need to calculate the attack strength (λA​) and defense potential (λB​) for each team. This can be done using historical performance data of the teams' offensive and defensive capabilities.


Calculating Attack Strength (λA​) and Defense (λB​)



Using the Poisson distribution, we can predict several outcomes for different matches by calculating the probabilities for each possible score. These predictions can then be used to guide sports betting.


Converting Estimated Probability to Odds


The estimated probabilities can be converted into betting odds using the following formula:



For example, if the estimated probability of an exact score is 0.0907, the odds will be:



LOSC - RC Lens


Example 2: Match between Lille and Lens in Ligue 1 during the 2023/2024 Season


To apply the Poisson distribution to the match between Lille (home) and Lens (away) in the 2023/2024 season, we will use the statistics of both teams.


Here are the steps to perform this analysis:


Step 1: Data Collection


Lille Statistics


- Average goals scored per home match: 1.89

- Average goals conceded per home match: 0.89


Lens Statistics


- Average goals scored per away match: 0.91

- Average goals conceded per away match: 1.00


Step 2: Calculating Attack Strength and Defense Potential


For Lille:


- Attack strength (λA​) = 1.89

- Defense potential (λB​) = 0.89


For Lens:


- Attack strength (λA​) = 0.91

- Defense potential (λB​) = 1.00


Step 3: Applying the Poisson Distribution


Calculating Score Probabilities


We use the Poisson distribution formula to calculate the probabilities of different scores.


For Lille scoring k goals:


LOSC


For Lens scoring \( k \) goals:

RC Lens


For Lens scoring k goals:


Lille


Calculating Score Probabilities for Lens

Lens


Step 4: Calculating Probable Scores


To obtain the combined probability of an exact score, we multiply the corresponding probabilities of each team. For example:


Probability of a 2-1 score in favor of Lille:



Step 5: Converting Probabilities to Odds


To convert these probabilities into odds, we use the following formula:



For a 2-1 score for Lille:



Limitations of the Poisson Distribution


Despite its usefulness, the Poisson distribution has certain limitations:


- It assumes events are independent, which is not always the case in football matches.

- It does not account for contextual factors such as injuries, weather conditions, or tactical changes.

- It is based on historical averages and may not reflect the current performance of the teams.


Conclusion


The Poisson distribution is a powerful tool for predicting exact scores in sports betting, providing a mathematical basis for estimating the probabilities of various outcomes. However, it is essential to recognize its limitations and use it in conjunction with other analyses to achieve more accurate and reliable predictions. By combining the Poisson distribution with a deep understanding of the teams and match circumstances, bettors can improve their strategies and increase their chances of success.

Friday, July 12, 2024

In my same category

Betting

Bankroll management: Odds, edge and variance

Friday, January 10, 2025

In this article, we will explore key concepts that are essential for anyone looking to approach betting in a strategic and disciplined way. We will cover three fundamental areas: bankroll management in betting, understanding variance, and the different ba...

See the article

Betting

Why Patience is an Essential Trait for Serious Bettors

Monday, December 16, 2024

In the world of betting, understanding the psychological aspect is as crucial as having accurate information or choosing the right bookmaker. Whether betting for fun, passion for sports, or financial gain, certain rules must be followed to maximize profit...

See the article

Betting

The 10,000 Hour Theory: Becoming an Expert in Sports Betting

Wednesday, December 4, 2024

The 10,000-hour theory, popularized by Malcolm Gladwell in his book Outliers: The Story of Success, argues that it takes approximately 10,000 hours of deliberate practice to achieve world-class expertise in any field. While this idea has been widely debat...

See the article